GRAPH EMBEDDING An introduction

Rémy Cazabet

DISCLAIMER

- I'm not an expert in Graph embedding !
- It is "my" vision:
 - Someone from "Network Science"
 - Who see Graph Embedding arriving from the Machine Learning Community

WHAT IS GRAPH EMBEDDING ?

GRAPHS / NETWORKS

Ad Hoc Network Algorithms

Link prediction Community detection Graph reconstruction Node classification

. . .

MACHINE LEARNING

1.1.1

Graph embedding

Graph embedding

Machine Learning

. . .

Link prediction Graph reconstruction = Prediction Community detection = Clustering Node classification = Classification

. . .

WHY DOES GRAPH EMBEDDING MATTERS ?

WORD EMBEDDING

The Apparent compares of A containers is on a promoved multiple doing the Hamilton is model in market and the Apparent compares of the Apparent co

WORD EMBEDDING

Word2vec, Skipgram, ...

GENERIC "SKIPGRAM"

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]

GRAPH EMBEDDING

- Word embedding: a revolution in Natural Language Processing
- Graph embedding: a revolution in Network Science/Graph Analysis?

- How to do it?
- How well does it works?

RANDOM NOTES

SKIPGRAM Word embedding Natural language => vectors

[http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/]

INTUITIVE/NAIVE IDEA

Recent methods based on "neural networks"

INTUITIVE/NAIVE IDEA

- Normal Classifier:
 - For a set of items with n features and a known class
 - Learn n weights to predict the class of any item. (similar to linear regression)
- Word2vec:
 - A set of items (nodes) with
 - no known features
 - A ''class'': the node(s) in its ''context'' (random walks)
 - Find the best d features that allow to find the d best weights that best predict the class
 - =>Technically, 2 chained "gradient descent", one for weights, one for features.

NOTE

- There are completely different methods that also produce "embeddings"
 - Graph factorization (NMF non-negative matrix factorization)
 - Graph Layouts (Force Layout, ...). Often used in 2d but can be used in any dimension

EMBEDDING... WHAT ?

- Embeddings aim to "preserve the structural organization"
- But what does it means ?
 - We understand intuitively what layout preserves...
 - What about other more recent embeddings ?
- (Another note: interest of recent embeddings: scalability)