A metaworld: metastability in metacommunities

A. Franc & N. Peyrard

INRA BioGeCo & MIAT

October 17th, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivations

- 2 Communities, Metapopulations & Metacommunities
- 3 Metastable state and quasi-stationary distribution
- 4 Mean field approximation
- 5 Some results on the role of the geometry of the connections

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

6 Conclusion

Community Structure of Tropical Rainforests

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Bats and rabbies in French Guiana

- bats live in caves
- males and females are distinguished (different dispersal)
- they can be healthy or infected
- a cave is a patch: island model
- dispersal between caves distance dependent, by males

What is a metacommunity?

Definition (Leibold & al., Ecology Letters, 2004)

A metacommunity is a set of communities located at some sites, or patches, connected by dispersal.

Modeling

- species interact within one patch
- species disperse along a graph connecting patches

Context: longstanding question in ecology (Clements (1936), Gleason (1926), Hubbel (2001))

What is the role of local adaptation and dispersal in shaping communities?

• here: which is the role of the shape of dispersal networks?

\Rightarrow Geometry of networks

The within patches processes having been selected, what is the impact of the structures of dispersal graphs on the outcome of the model

- the quasi-stationary distribution
- the bifurcations (or phase transitions)

• Simplification

Is it possible to exhibit relevant results with simplifications like mean field approximation?

Modeling metacommunities as reaction-diffusion processes on graphs

Formalisation		
	space time state	discrete (patches) continuous binary matrix
reaction		intra-patch dynamics one reaction process per patch
	diffusion	between patches dispersal one dispersal graph per species

State of the metacommunity

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

The model: a times continuous Marckov Chain

Master equation $(2^{np} \times 2^{np})$

$$\mathbb{P}(X^{t+dt} = x) = \sum_{x'} \mathbb{P}(\underbrace{X^{t+dt} = x \mid X^t = x'}_{\text{one event}}) \times \mathbb{P}(X^t = x')$$

an event: reaction (within patch interaction) or diffusion (between patches disperal)

Reaction phase $(2^p \times 2^p)$

$$\mathbb{P}(X_i^{t+dt} = x \mid X_i^t = x') = \begin{cases} R_{i,xx'}dt & \text{if } x \subsetneq x' \\ 1 - \sum_{x \subsetneq x'} R_{i,xx'}dt & \text{if } x = x' \end{cases}$$

Dispersal phase $(2^n \times 2^n)$

For each species α , dispersal along an edge of a weighted graph

$$\mathbb{P}(A_{\alpha}^{t+dt} = a \,|\, A_{\alpha}^{t} = a') = \begin{cases} D_{\alpha,aa'} dt & \text{if } a' \subsetneq a \\ 1 - \sum_{a' \subsetneq a} D_{\alpha,aa'} dt & \text{if } a = a' \end{cases}$$

Simulations ...

Erdös-Renyi random graph ; 50 nodes; edge density =0.2 ; reaction as predator-prey ; dispersal 0.2 & 0.8

heuristically ...

For a Markov chain with an absorbing state:

- the asymptotic state (or equilibrium) is the absorbing state
- however the chain can wander during a very long (not infinite) time over an observed subset of non absorbing states

Killing time

$$T_0 = \inf \left\{ t \in \mathbb{R} \ : \ x^t = x_\infty \right\}$$

Conditionally Invariant Distribution

$$P = \begin{pmatrix} 1 & a \\ \mathbf{0} & P^* \end{pmatrix} \qquad \begin{pmatrix} 0 \\ u^* \end{pmatrix} \xrightarrow{P^t} \begin{pmatrix} 1 - \rho^t \\ \rho^t u^* \end{pmatrix} \qquad \text{if} \quad P^* u = \rho u^*$$

Quasi-stationary distribution

$$u^*$$
 s.t. $P^*u^* = \rho u^*$, $\mathbb{E}(T_0) = \frac{1}{1-\rho}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Computational Complexity

Computational Complexity

- Dynamics of a metacommunity is modeled as a Markov Chain on a state space Ω with $|\Omega|=2^{np}$
- the size of matrix P is $2^{np} \times 2^{np}$

Block diagonal form of transition matrix

$$P = \begin{pmatrix} 1 & A_{11} & \dots & A_1q \\ 0 & P_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & A_{q-1,q} \\ 0 & \dots & \dots & P_q \end{pmatrix}$$

 \implies to compute quasi-stationary distribution, it suffices to compute largest eigenvalues of matrices P_k (circulation classes).

An observation

There is a one to one correspondence between circulation classes and subsets of species.

Still some limits from computation complexity

Size of circulation classes

If p = 2, there are 4 blocks, of size respectively

$$\begin{array}{c|c} S & \text{size} \\ \hline 00 & 1 \\ 01 & 2^n - 1 \\ 10 & 2^n - 1 \\ 11 & (2^n - 1)^2 \end{array}$$

bock sizes for n = 10

1 imes 1	1 imes 511	1 imes 511	1×1046529
0	511 imes 511	511 imes 511	511×1046529
0	0	511 imes 511	511×1046529
0	0	0	$1046529~\times~1046529$

Mean-Field approximation: mean degree (back to continuous time)

with words ...

Each species α in site *i* "sees" $z_{\alpha i}$ neighbor patches occupied or not by species α with global probability

$$\rho_{\alpha}^{t} = \frac{1}{n} \sum_{i} x_{i\alpha}^{t}$$

with equations ...

$$egin{aligned} & \mathbb{P}(X_{ilpha}^{t+dt}=1\,|\,X_{ilpha}^t=1)=1 \ & \mathbb{P}(X_{ilpha}^{t+dt}=1\,|\,X_{ilpha}^t=0)=c\,d_{lpha i}\,
ho_lpha\,dt \end{aligned}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Mean-Field approximation: with degree distribution (1/2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Mean-Field approximation: with degree distribution (2/2)

Geometry of networks

The within patches processes having been selected, what is the impact of the structures of dispersal graphs on the outcome of the model

- the quasi-stationary distribution
- the bifurcations (or phase transitions)

Graph families

- a graph with *n* nodes can have $2^{\frac{n(n-1)}{2}}$ edge patterns
- ullet \Longrightarrow a simplification with the notion of graph family
- which is a rule to build a graph (with random)

Exemples

• Erdös-Rényi random graph with degree probability p

イロト イヨト イヨト イヨト ヨー シベ

- Geometric random graph
- Star graph

A host/parasite system (one colonization rate) ; the dispersal graph is a square grid of size 7×7 ; healthy host in blue ; infected host in green.

Geometric Random Graph

A host/parasite system (one colonization rate) ; the dispersal graph is a Geometric Random Graph ; 50 nodes ; healthy host in blue ; infected host in green.

Geometric Random Graph

A host/parasite system (one colonization rate) ; the dispersal graph is a Geometric Random Graph ; 100 nodes ; healthy host in blue ; infected host in green.

A star

A host/parasite system (one colonization rate) ; the dispersal graph is a star ; 50 nodes ; healthy host in blue ; infected host in green.

Methods

- Some work remains to be done on mean-field approximation
- can be extended to pair approximation, Bethe, Kikuchi, ...

Ecological models

The model is versatile: can be tuned with some work to be relevant in different situations:

《曰》 《聞》 《臣》 《臣》 三臣

- trophic web
- epidemiology (compartiment models as mean field)
- biogeography (dispersal and competition between trees)

Acknowlegements

• Labex CEBA (Centre d'Etde sur la Biodiversité Amazonienne)

• Programme *microbiome*

ceba

◆□▶ ◆舂▶ ◆産▶ ◆産▶

• Anne Lavergne & Benoit de Thoisy, Institut Pasteur de Cayenne

