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Community Structure of Tropical Rainforests



Bats and rabbies in French Guiana

bats live in caves

males and females are distinguished (different dispersal)

they can be healthy or infected

a cave is a patch: island model

dispersal between caves distance dependent, by males



What is a metacommunity?

Definition (Leibold & al., Ecology Letters, 2004)

A metacommunity is a set of communities located at some sites, or
patches, connected by dispersal.

Modeling

species interact within one patch

species disperse along a graph connecting patches



Which questions to address?

Context: longstanding question in ecology (Clements (1936), Gleason
(1926), Hubbel (2001))

What is the role of local adaptation and dispersal in shaping communities?

here: which is the role of the shape of dispersal networks?

⇒ Geometry of networks

The within patches processes having been selected, what is the impact of
the structures of dispersal graphs on the outcome of the model

the quasi-stationary distribution

the bifurcations (or phase transitions)

• Simplification

Is it possible to exhibit relevant results with simplifications like mean field
approximation?



Modeling metacommunities as reaction-diffusion processes
on graphs

Formalisation

space discrete (patches)
time continuous
state binary matrix

reaction intra-patch dynamics
one reaction process per patch

diffusion between patches dispersal
one dispersal graph per species



State of the metacommunity
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The model: a times continuous Marckov Chain

Master equation (2np × 2np)

P(X t+dt = x) =
∑
x ′

P(X t+dt = x |X t = x ′︸ ︷︷ ︸
one event

)× P(X t = x ′)

an event: reaction (within patch interaction) or diffusion (between patches
disperal)

Reaction phase (2p × 2p)

P(X t+dt
i = x |X t

i = x ′) =

{
Ri ,xx ′dt if x ( x ′

1−
∑

x(x ′ Ri ,xx ′dt if x = x ′

Dispersal phase (2n × 2n)

For each species α, dispersal along an edge of a weighted graph

P(At+dt
α = a |At

α = a′) =

{
Dα,aa′ dt if a′ ( a
1−

∑
a′(a Dα,aa′ dt if a = a′



Simulations ...

Erdös-Renyi random graph ; 50 nodes; edge density = 0.2 ; reaction as
predator-prey ; dispersal 0.2 & 0.8



Metastability or quasi-stationary distribution

heuristically ...

For a Markov chain with an absorbing state:

the asymptotic state (or equilibrium) is the absorbing state

however the chain can wander during a very long (not infinite) time
over an observed subset of non absorbing states

Contact Process Metastable state

ρt =
1

n

∑
i

x ti



Some notions (here in discrete time)

Killing time

T0 = inf {t ∈ R : x t = x∞}

Conditionally Invariant Distribution

P =

(
1 a
0 P∗

) (
0
u∗

)
Pt

−−−−→
(

1− ρt
ρtu∗

)
if P∗u = ρu∗

Quasi-stationary distribution

u∗ s.t. P∗u∗ = ρ u∗, E(T0) =
1

1− ρ



Computational Complexity
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Computational Complexity

Dynamics of a metacommunity is modeled as a Markov Chain on a
state space Ω with |Ω| = 2np

the size of matrix P is 2np × 2np



Pollet’s contribution (discrete time too)

Block diagonal form of transition matrix

P =


1 A11 . . . A1q

0 P1
. . .

...
...

. . .
. . . Aq−1,q

0 . . . . . . Pq


=⇒ to compute quasi-stationary distribution, it suffices to compute largest
eigenvalues of matrices Pk (circulation classes).

An observation

There is a one to one correspondence between circulation classes and
subsets of species.



Still some limits from computation complexity

Size of circulation classes

If p = 2, there are 4 blocks, of size respectively

S size

00 1
01 2n − 1
10 2n − 1
11 (2n − 1)2

bock sizes for n = 10

1× 1 1× 511 1× 511 1× 1 046 529
0 511× 511 511× 511 511× 1 046 529
0 0 511× 511 511× 1 046 529
0 0 0 1 046 529 × 1 046 529



Mean-Field approximation: mean degree
(back to continuous time)

with words ...

Each species α in site i ”sees” zαi neighbor patches occupied or not by
species α with global probability

ρtα =
1

n

∑
i

x tiα

with equations ...{
P(X t+dt

iα = 1 |X t
iα = 1) = 1

P(X t+dt
iα = 1 |X t

iα = 0) = c dαi ρα dt



Mean-Field approximation: with degree distribution (1/2)

d1d2patch

neighbor 1

neighbor d1

neighbor 1

neighbor d2

d
1

n
ei

gh
b

or
s

d
en

si
ty
ρ
1

species 1

sp
ec

ies
1 d

2
n

ei
gh

b
or

s

d
en

si
ty
ρ

2

sp
ec

ies
2

species 2



Mean-Field approximation: with degree distribution (2/2)

00

01

10

11

state at time t + dt event (01→ . . .) rate

11 reaction R01,11 dt
00 dispersal of species 2 d2c2ρ

t
2 dt

01 no reaction 1− R00,01 d1t
01 no dispersal of species 1 1− d1c1ρ

t
1 dt



The role of space: graph families

Geometry of networks

The within patches processes having been selected, what is the impact of
the structures of dispersal graphs on the outcome of the model

the quasi-stationary distribution

the bifurcations (or phase transitions)

Graph families

a graph with n nodes can have 2
n(n−1)

2 edge patterns

=⇒ a simplification with the notion of graph family

which is a rule to build a graph (with random)

Exemples

Erdös-Rényi random graph with degree probability p

Geometric random graph

Star graph

. . .



Grid or a lattice

A host/parasite system (one colonization rate) ; the dispersal graph is a
square grid of size 7× 7; healthy host in blue ; infected host in green.



Geometric Random Graph

A host/parasite system (one colonization rate) ; the dispersal graph is a
Geometric Random Graph ; 50 nodes ; healthy host in blue ; infected host
in green.



Geometric Random Graph

A host/parasite system (one colonization rate) ; the dispersal graph is a
Geometric Random Graph ; 100 nodes ; healthy host in blue ; infected
host in green.



A star

A host/parasite system (one colonization rate) ; the dispersal graph is a
star ; 50 nodes ; healthy host in blue ; infected host in green.



Conclusions & perspectives

Methods

Some work remains to be done on mean-field approximation

can be extended to pair approximation, Bethe, Kikuchi, . . .

Ecological models

The model is versatile: can be tuned with some work to be relevant in
different situations:

trophic web

epidemiology (compartiment models as mean field)

biogeography (dispersal and competition between trees)
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