
A BENCHMARK FOR GENERATING
DYNAMIC COMMUNITIES WITH CUSTOM

LIFECYCLE

Cazabet Rémy

COMMUNITY DETECTION

• Community detection or “graph clustering”
‣ No formal definition
‣ Two informal definitions:

- groups of densely connected nodes, weakly connected to the rest of the network
- groups of nodes that “make sense” in real networks

‣ Too limited : Stochastic Block Models ?

COMMUNITY DETECTION

COMMUNITY DETECTION

COMMUNITY DETECTION

• Numerous applications:
‣ groups of friends/colleagues in ego-networks
‣ structure of an organisation (company, laboratory…)
‣ topics in scientific networks
‣ groups of interest in social medias (politics, opinions, etc.)
‣ User de-anonymization
‣ …

DYNAMIC NETWORKS

DYNAMIC NETWORKS

• Most real world networks evolve
‣ Nodes can appear/disappear
‣ Edges can appear/disappear
‣ Nature of relations can change

• How to represent those changes?

DYNAMIC NETWORKS
Relations Interactions

Long term
-Friend

-Colleague
-Family relation

-…

Short term ?
-Collaborators in the same

project
-Same team in a game

-Attendees of the same meeting
-…

Instantaneous
-e-mail

-Text message
-Co-authoring

…

With duration
-Phone call

-Discussion in real life
-Participate in a same meeting

Semantic
level

DYNAMIC NETWORKS
Relations Interactions

Graph series Link StreamsInterval graphs
DN={G1,G2…Gn}

Gi=(V,E)
E : VxV

DN=(V,E,T,DV)
DV: VxTxT
E: VxVxTxT

DN=(V,E,T)
E: VxVxT

Semantic
level

Representation
level

DYNAMIC NETWORKS
Relations Interactions

Graph series Link StreamsInterval graphs
DN={G1,G2…Gn}

Gi=(V,E)
E : VxV

DN=(V,E,T,DV)
DV: VxTxT
E: VxVxTxT

DN=(V,E,T)
E: VxVxT

Semantic
level

Representation
level

AggregationSnapshot

DYNAMIC NETWORKS
Relations InteractionsSemantic

level

Representation
level Graph series Link StreamsInterval graphs

File format Sequence of
graphs

Temporal edge
listInterval list

-Modification lists
-List of intervals

-1file by graph
-1 file with
all graphs

-List of edges with
timestamps

AggregationSnapshot

DYNAMIC NETWORKS

Representation
level Graph series Link StreamsInterval graphs

Aggregation

Persistance

Discretization

(Reformulation)

DYNAMIC COMMUNITY
DETECTION

Source : Dynamic community detection: a Survey
[Rossetti, Cazabet, 2018]

COMMUNITY DETECTION

Static networks Dynamic Networks

Sets of nodes Sets of periods of nodes

156 link streams for modelling interactions over time and application to the analysis
of ip traffic

We propose here to model email exchanges directly as
link streams, i.e. series of triplets (t, a, b) meaning that
individuals a and b exchanged an email at time t. We
then introduce notions that capture both the temporal and
structural nature of these exchanges. We use a typical
dataset obtained from a public mailing-list archive to il-
lustrate our approach. We analyze this dataset using our
model, with a special focus on the properties of threads
within the whole archive. Our goal is to understand how
the now classical concept of communities in complex net-
works may translate to threads in link streams represent-
ing email exchanges. Indeed, we expect the exchanges of
a given thread to involve a specific set of individuals for a
specific period of time, thus being dense from both struc-
tural and temporal point of views. This is illustrated in
Figure A.1.

a
b
c
d

0 5 time15 2010

e

Figure A.1: An example of link stream
representing email exchanges between
individuals a, b, c, d and e, with threads
represented by colored areas. For
instance, at time 5, b and c exchange
an email, as well as d and e. Threads
are a priori dense series of exchanges
involving a limited group of nodes
during a limited period of time.

A.2 Dataset

Archives of exchanges in various mailing-lists are readily
available on the web, and studying them provides very
rich insights on various issues. They have the advantage of
being publicly available in many cases, and some involve
large amounts of users over long time periods.

A typical example is provided by Debian mailing
list [SPI, 2015]: it contains emails sent from over 51753
email addresses, over 20 years. In addition, exchanges in
this mailing-list have been studied in the past [Wang, 2014,
Sowe et al., 2006, Dorat et al., 2007]. Finally, this dataset
provides the thread information for each message, that we
can use as a ground truth. For all these reasons, we use in
this paper the Debian mailing list to illustrate and validate

[Viard 2016]

COMMUNITY DETECTION

Static networks Dynamic Networks

Sets of nodes Sets of periods of nodes

[Viard 2016]

COMMUNITY DETECTION

Growth Contraction
t t+1 t t+1

Merging
t t+1

Splitting
t t+1

Birth
t t+1

Death
t t+1

t t+1 t+nt+n-1

Resurgence

Community events
(or operations)

COMMUNITY DETECTION
Growth Contraction

t t+1 t t+1

Merging
t t+1

Splitting
t t+1

Birth
t t+1

Death
t t+1

t t+1 t+nt+n-1

Resurgence

Community events
(or operations)

Which one persists ?
-Oldest ?

-Most similar ?
-Larger ?

-…

COMMUNITY DETECTION
Chapitre 3. Conception d’un algorithme de détection de communautés dynamiques

Figure 3.25 – Visualisation de communautés dynamiques, par Rosvall et al. [RB10]

a cependant plusieurs inconvénients : il est di�cile de trouver une information précise

dessus, elle est parfois di�cile à lire, et elle reste limitée à de petits graphes. Surtout, elle

ne pourrait pas être utilisé pour des communautés vraiment complexes, dans lesquelles les

nœuds pourraient appartenir à plusieurs communautés, et en changeraient. La position de

chaque nœud sur l’axe vertical est en e↵et décidée en fonction de la communauté à laquelle

il appartient, et c’est cette position qui assure la visibilité des communautés. Si un nœud

appartient fortement à plusieurs communautés, il n’est plus possible de le placer à une

position pertinente.

– Rosvall et al [RB10] proposent une visualisation de très grande qualité, très pertinente dans

le cas de réseaux contenant relativement peu de communautés (Figure 3.25. Le point le

plus intéressant est que l’on peut représenter des fusions et des divisions de communautés.

Le problème est cependant qu’ici aussi, il n’est pas possible de prendre en compte le

recouvrement, un nœud ne peut appartenir qu’à une et une seule communauté. De plus,

comme on peut le voir sur l’illustration, cette méthode n’est adaptée qu’à des graphes dont

l’évolution n’est constitué que de quelques instantanés. Dans le cas de graphes contenant

de très nombreuses étapes, la visualisation deviendrait trop complexe pour vraiment être

utile. (Croisement des di↵érentes lignes, etc.)

La solution que nous avons adoptée devait répondre à trois exigences :

– Permettre de prendre en compte des communautés avec recouvrement

– Permettre de suivre le détail de l’évolution des communautés

– Permettre de représenter de grands graphes

Nous avons finalement opté pour une visualisation interactive. Au premier niveau de visualisa-

tion, seules les communautés sont représentées, comme montré sur la figure 3.26. Chaque ligne

horizontale correspond à une communauté, et on voit clairement ses dates de naissance et de

disparition. Il peut y avoir de nombreuses communautés sans que cela ne rende la visualisation

complexe.

Il est ensuite possible d’observer le détail de l’évolution de chacune de ces communautés (via

un simple clic dans la version intéractive). La visualisation est alors semblable, mais chaque ligne

106

Rosvall et al. 2010

An example

COMMUNITY DETECTION
Over 40 methods published,

but barely any systematic comparison
(nor re-use)

BENCHMARK FOR DYNAMIC
COMMUNITIES

STATE OF THE ART

N1
(e.g. with LFR)

N2
(e.g. with LFR)

Permutations

STATE OF THE ART

N1
(e.g. with LFR)

N2
(e.g. with LFR)

Permutations

Good, but too simple

INDEPENDENT SNAPSHOTS

N1 N2 N3 …

Nx: a network whose edges are generated independently

SBM BASED MODELS

‣ [Granell et al. 2015]

(Ad hoc structure evolution)

SBM BASED MODELS
[Bazzi et al. 2016]

Model based on a dependency layer
(how similar are affiliations between steps)

OVERLAPPING RANDOM
GRAPHS

Evolution configured by numerical parameters

[Sengupta et al. 2017]

INDEPENDENT SNAPSHOTS

Good community structures, but:
‣ Limited (# parameters, …)

‣ Edges are redrawn for each snapshot
‣ =>Strong assomption (methods not based on

SBM won’t see any community)

PROGRESSIVE CHANGE
ALGORITHM

[RDyn,
Rossetti et al. 2015]

PROGRESSIVE CHANGE
ALGORITHM

Solve the problem of independent snapshots, but:
‣ Is the evolution of community structure realistic ?
‣ Crude control on generated communities

OUR PROPOSITION

TWO CONTRIBUTIONS

• Easy way to control community lifycles

• Good edge evolution properties:
‣ Stable edges
‣ Preserved random structure of communities

EASY COMMUNITY LIFECYCLE

• Atomic events for nodes (and communities)
‣ Birth (new community with 1 or several nodes => new node)
‣ Death (End of a community with 1 or several nodes =>kill node)
‣ Migration (affiliation change)

EASY COMMUNITY LIFECYCLE

• Composed events
‣ Merge

- Migration of nodes
- Death of merged community (with 0 node)

‣ Split
- Birth (community with 0 nodes)
- Migration of nodes

EASY COMMUNITY LIFECYCLE

• Complex events
‣ Gradual Growth

2.0.3 Event sequences

We want to be able to describe more complex events that could represent
realistic, long term evolutions of communities. We give below examples of
these complex events that are composed of event sequences

GradualGrowth

• c: name of the community to modify

• n: number of nodes to add gradually

for i 0 to n do
Birth(1,i);
Merge([c,i],[c]);

end

TheseusBoat

• c: name of the community to modify

• n: number of nodes to modify gradually

A Theseus boat, named after the Paradox of the ship of Theseus, is a se-
quence of events such that nodes in a community are gradually replace by
new ones. If n corresponds to the initial size of the community, then all nodes
will be gradually replaced, such as none of the initial nodes will remain at
the end of the process, while the community persisted.

Such processes are likely to be common in social networks, think for
instance of soccer team or any institution whose duration exceeds the one
of its members.

initNodes c.nodes;
for i 0 to n do

Birth(1, ”born”+i);
Merge([c, ”born”+i], [c]);
toRemove initNodes.pop();
Split(c, [c, ”killed”+i], [c.nodes-toRemove, toRemove]);
Death(”killed”+i);

end

2.1 Events timing constraints

In the previous section, we have defined how to express the list of events on
communities. In this section, we define how their sequence is determined in

4

EASY COMMUNITY LIFECYCLE

• Complex events
‣ Theseus Ship

2.0.3 Event sequences

We want to be able to describe more complex events that could represent
realistic, long term evolutions of communities. We give below examples of
these complex events that are composed of event sequences

GradualGrowth

• c: name of the community to modify

• n: number of nodes to add gradually

for i 0 to n do
Birth(1,i);
Merge([c,i],[c]);

end

TheseusBoat

• c: name of the community to modify

• n: number of nodes to modify gradually

A Theseus boat, named after the Paradox of the ship of Theseus, is a se-
quence of events such that nodes in a community are gradually replace by
new ones. If n corresponds to the initial size of the community, then all nodes
will be gradually replaced, such as none of the initial nodes will remain at
the end of the process, while the community persisted.

Such processes are likely to be common in social networks, think for
instance of soccer team or any institution whose duration exceeds the one
of its members.

initNodes c.nodes;
for i 0 to n do

Birth(1, ”born”+i);
Merge([c, ”born”+i], [c]);
toRemove initNodes.pop();
Split(c, [c, ”killed”+i], [c.nodes-toRemove, toRemove]);
Death(”killed”+i);

end

2.1 Events timing constraints

In the previous section, we have defined how to express the list of events on
communities. In this section, we define how their sequence is determined in

4

EASY COMMUNITY LIFECYCLE

• One can programmatically design a complex scenario, or
design a specific one

SYNTHETIC NETWORK
Migration

SYNTHETIC NETWORK
Theseus boat

SYNTHETIC NETWORK
Birth and death

SYNTHETIC NETWORK
Merge

SYNTHETIC NETWORK
Division

CONTRIBUTION 2:
EDGE GENERATION

EDGE GENERATION

• We want edges to be stable: not an independent process

• We assume an SBM-like process:
‣ We know the affiliations
‣ We know how many edges we want (for each community)

EDGE GENERATION

• The problem: community C at t1 must differ from C at t2:
‣ Different nodes
‣ Different # of edges

• Two simple ideas to do that:
‣ Keep the current structure and modify only at the margin
‣ Pick edges of the new community randomly with a probability p(⍺,ẟ,ɸ)

- With ẟ the previous presence of the edge, and ⍺ a tunable parameter and ɸ the objective
density

EDGE GENERATION

• Problem: Any method that preserves the previous structure
introduces a historical bias:

• Imagine 2 communities of size 4 and density 1
‣ 12 edges

• Merge into 1 community (of size 8), and desired density of
0.23
‣ 13 edges

• Resulting community: 2 cliques connected by a single edge

SOLUTION

• For each pair of node, associate a random value a∈[0,1]
‣ Interpreted as the “affinity” of each pair of node

• When a community change
‣ 1)compute the desired number of edges x
‣ 2)pick the x pairs of nodes of highest affinity value inside the community

• When several modifications needed, add/remove edges in a
random order until reaching the new state

FUTURE WORK
• Is there a flow ?

• Make everything work well

• Compare existing methods empirically
‣ How to define properly the ground truth ?
‣ On what scenario ?
‣ Should I add a random generator of scenario ?
‣ Which methods ? (Currently about 10 runnable ones)

• Evaluate
‣ How exactly ?

FUTURE WORK

• If anyone wants to help, you’re welcome !
‣ (hard to find time to code…)

UNRELATED AD :)

QUESTIONS?
RECOMMENDATIONS?

IDEAS?

