

LIRIS

A BENCHMARK FOR GENERATING DYNAMIC COMMUNITIES WITH CUSTOM LIFECYCLE

Cazabet Rémy

- Community detection or "graph clustering"
 - No formal definition
 - Two informal definitions:
 - groups of densely connected nodes, weakly connected to the rest of the network
 - groups of nodes that "make sense" in real networks
 - Too limited : Stochastic Block Models ?

Numerous applications:

- groups of friends/colleagues in ego-networks
- structure of an organisation (company, laboratory...)
- topics in scientific networks
- groups of interest in social medias (politics, opinions, etc.)
- User de-anonymization
- ٠...

- Most real world networks evolve
 - Nodes can appear/disappear
 - Edges can appear/disappear
 - Nature of relations can change
- How to represent those changes?

Semantic level

Relations

Long term

-Friend -Colleague -Family relation

- - - -

Short term ?

-Collaborators in the same project -Same team in a game -Attendees of the same meeting

- . . .

Interactions

Instantaneous

-e-mail -Text message -Co-authoring

. . .

With duration

-Phone call -Discussion in real life -Participate in a same meeting

DYNAMIC COMMUNITY DETECTION

Source : Dynamic community detection: a Survey [Rossetti, Cazabet, 2018]

Static networks

Dynamic Networks

Sets of nodes

Sets of periods of nodes

[Viard 2016]

Static networks

Dynamic Networks

Sets of nodes

Sets of periods of nodes

Community events (or operations)

Which one persists ? -Oldest ? -Most similar ? -Larger ?

Community events (or operations)

An example

Rosvall et al. 2010

Over 40 methods published, but barely any systematic comparison (nor re-use)

(A) Instant Optimal	(B) Temporal Trade-Off	(C) Cross-Time
(A1) Iterative, Similarity Based	(B1) Update by Global Optimization	(C1) Fixed Memberships, Fixed Properties
(A2) Iterative, Core-Node Based	(B2) Informed CD by Multi-Objective Optimization	(C2) Fixed Memberships, Evolving Properties
(A3) Multi-Step Matching	(B3) Update by Set of Rules (B4) Informed CD by Network Smoothing	(C3) Evolving Memberships, Fixed Properties
usters at <i>t</i> depends only on the current state		(C4) Evolving Memberships, Evolving Properties
the network usters are non-temporally smoothed	Clusters at t depends on current and past states of the network	Clusters at t depends on both past and futu
communities labels, however, can be	Clusters are incrementally temporally smoothed	states of the network Clusters are Completely temporally smooth

BENCHMARK FOR DYNAMIC COMMUNITIES

STATE OFTHE ART

(e.g. with LFR)

N2 (e.g. with LFR)

Permutations

STATE OFTHE ART

(e.g. with LFR)

N2 (e.g. with LFR)

Permutations

Good, but too simple

INDEPENDENT SNAPSHOTS

NI - N2 - N3

Nx: a network whose edges are generated independently

SBM BASED MODELS

(Ad hoc structure evolution)

• [Granell et al. 2015]

SBM BASED MODELS

[Bazzi et al. 2016]

Model based on a dependency layer (how similar are affiliations between steps)

OVERLAPPING RANDOM GRAPHS

Evolution configured by numerical parameters

Param.	Meaning	Recomm. Value	
N	Number of nodes in G_0	-	
T	Number of time steps	-	
x_{min}	Minimum node membership	1	
x_{max}	Maximum node membership	N/10	
β_1	Community Membership Exponent	2.5	
n_{min}	Minimum size of community	min(N/100, 20)	
n_{max}	Maximum size of community	N/10	
β_2	Community Size Exponent	2.5	
α	Intra Community Edge Prob. = $\frac{\alpha}{\pi^2}$	2	
γ	Intra Community Edge Prob. = $\frac{\eta_{\alpha'}}{\pi^{\gamma'}}$	0.5	
ε	Inter Community Edge Probability	$2N^{-1}$	
p	Community Event Probability	0.1	
p'	Node Event Probability	10^{-2}	
λ	Community event sharpness	0.2	
t_{effect}	Time steps for community events to take effect	-	

[Sengupta et al. 2017]

INDEPENDENT SNAPSHOTS

Good community structures, but:

- Limited (# parameters, ...)
- Edges are redrawn for each snapshot
 - =>Strong assomption (methods not based on SBM won't see any community)

PROGRESSIVE CHANGE ALGORITHM

Positional arguments

Name	Туре	Description	Default
nodes	Integer	Number of nodes	1000
iterations	Integer	Number of iterations	1000
simplified	Boolean	Simplified execution	True

Optional arguments

Flag	Extended Name	Туре	Description	Default
-d	avg_degree	Integer	Average node degree	15
-S	sigma	Float	Percentage of node's edges within a community	.7
-1	lbd	Float	Lambda community size distribution	1
-a	alpha	Float	Alpha degree distribution	3
-р	prob_action	Float	Probability of node action	1
-r	prob_renewal	Float	Probability of edge renewal	.8
-q	quality_threshold	Float	Conductance quality threshold	.3
-n	new_nodes	Float	Probability of node appearance	0
-j	delete_nodes	Float	Probability of node vanishing	0
-е	max_events	Integer	Max number of community events for stable iteration	1

[RDyn, Rossetti et al. 2015]

PROGRESSIVE CHANGE ALGORITHM

Solve the problem of independent snapshots, but:
Is the evolution of community structure realistic ?
Crude control on generated communities

OUR PROPOSITION

TWO CONTRIBUTIONS

- Easy way to control community lifycles
- Good edge evolution properties:
 - Stable edges
 - Preserved random structure of communities

- Atomic events for nodes (and communities)
 - Birth (new community with 1 or several nodes => new node)
 - Death (End of a community with 1 or several nodes =>kill node)
 - Migration (affiliation change)

Composed events

- Merge
 - Migration of nodes
 - Death of merged community (with 0 node)
- Split
 - Birth (community with 0 nodes)
 - Migration of nodes

Complex events

Gradual Growth

for $i \leftarrow 0$ to n do | Birth(1,i); | Merge([c,i],[c]); end

Complex events

Theseus Ship


```
initNodes \leftarrow c.nodes;

for i \leftarrow 0 to n do

Birth(1, "born"+i);

Merge([c, "born"+i], [c]);

toRemove \leftarrow initNodes.pop();

Split(c, [c, "killed"+i], [c.nodes-toRemove, toRemove]);

Death("killed"+i);

end
```

• One can programmatically design a complex scenario, or design a specific one

Migration

Theseus boat

Birth and death

Merge

Division

CONTRIBUTION 2: EDGE GENERATION

EDGE GENERATION

- We want edges to be stable: not an independent process
- We assume an SBM-like process:
 - We know the affiliations
 - We know how many edges we want (for each community)

EDGE GENERATION

- The problem: community C at t1 must differ from C at t2:
 - Different nodes
 - Different # of edges
- Two simple ideas to do that:
 - Keep the current structure and modify only at the margin
 - Pick edges of the new community randomly with a probability $p(\alpha, \delta, \phi)$
 - With δ the previous presence of the edge, and α a tunable parameter and φ the objective density

EDGE GENERATION

- Problem: Any method that preserves the previous structure introduces a **historical bias**:
- Imagine 2 communities of size 4 and density I
 - I2 edges
- Merge into 1 community (of size 8), and desired density of 0.23
 - I3 edges
- Resulting community: 2 cliques connected by a single edge

SOLUTION

- For each pair of node, associate a random value a∈[0,1]
 Interpreted as the "affinity" of each pair of node
- When a community change
 - I)compute the desired number of edges x
 - 2)pick the x pairs of nodes of highest *affinity* value inside the community
- When several modifications needed, add/remove edges in a random order until reaching the new state

FUTURE WORK

- Is there a flow ?
- Make everything work well
- Compare existing methods empirically
 - How to define properly the ground truth ?
 - On what scenario ?
 - Should I add a random generator of scenario ?
 - Which methods ? (Currently about 10 runnable ones)
- Evaluate
 - How exactly ?

FUTURE WORK

- If anyone wants to help, you're welcome !
 - (hard to find time to code...)

UNRELATED AD :)

MACHINE LEARNING AND NETWORK ANALYSIS FOR UNDERSTANDING THE NATURE OF ACTIVITIES IN CRYPTOCURRENCIES

Positions opening: 1) One Master Internship (5/6 months, from Feb. 2019 -) 2) One PhD position (3 years funding, Sept. 2019 -)

QUESTIONS? RECOMMENDATIONS? IDEAS?